Abstract
Puccinia triticina(Pt), as the causal agent of wheat leaf rust, employs a plethora of effector proteins to modulate wheat immunity for successful colonization. Understanding the molecular mechanisms underlyingPteffector-mediated wheat susceptibility remains largely unexplored. In this study, an effector Pt_21 was identified to interact with the apoplast-localized wheat thaumatin-like protein TaTLP1 using a yeast two-hybrid assay and the Pt_21-TaTLP1 interaction was characterized. The interaction between Pt_21 and TaTLP1 was validated byin vivoco-immunoprecipitation assay. A TaTLP1 variant, TaTLP1C71A, that was identified by the site-directed mutagenesis failed to interact with Pt_21. Pt_21 was able to suppress Bax-mediated cell death in leaves ofNicotiana benthamianaand inhibit TaTLP1-mediated antifungal activity. Furthermore, infiltration of recombinant protein Pt_21 into leaves of transgenic wheat line overexpressingTaTLP1enhanced the disease development of leaf rust compared to that in wild-type leaves. These findings demonstrate that Pt_21 suppresses host defense response by directly targeting wheat TaTLP1 and inhibiting its antifungal activity, which broadens our understanding of the molecular mechanisms underlyingPteffector-mediated susceptibility in wheat.
The Crop Journal, IF=5.81
https://doi.org/10.1016/j.cj.2023.04.006